Facing the challenge of power exhaust on the way to a future power plant with experiments in the JET and ASDEX Upgrade tokamaks M. Wischmeier^{a#}, M. Bernert^a, C.G. Lowry^{b;c}, G. Calabro^d, S. Wiesen^e, F. Reimold^e, A. Huber^e, M.L. Reinke^f, D. Brida^a, R. Dux^a, C. Guillemaut^g, L. Aho-Mantilaⁱ, S. Brezinsek^e, P. Drewelow^a, S. Glöggler^a, M. Groth^k, D. Harting^h, A. Kallenbach^a, B. Lipschultz^j, T. Lunt^a, C.F. Maggi^h, A. Meigs^h, M.F.F. Nave^g, S. Potzela, G. Sergienkoe, G. Sipsb;c, M. Stamph, B. Violad, JET contributors1, the ASDEX Upgrade and the EUROfusion MST1 teams2 EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK ^aMax-Planck-Institut f'ur Plasmaphysik, 85748 Garching bei München, Germany, ^bEuropean Commision, B-1049 Brussels, Belgium, ^cJET Exploitation Unit, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom, ENEA for EUROfusion, via E. Fermi 45, 00044 Frascati, Italy, Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, Germany, fOak Ridge National Laboratory, Oak Ridge, TN 37831, USA, gInstituto de Plasmas e Fuso Nuclear, Instituto Superior Técnico, Universidade de Lisboa, P-1049-001 Lisboa, Portugal, hCCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK, VTT Technical Research Centre of Finland, FI-02044 VTT, Finland, JUniversity of York, York Plasma Institute, Heslington, York, YO10 5DD, United Kingdom, ^kAalto University, Otakaari 4, 02015 Espoo, Finland ¹See the author list of "Overview of the JET results in support to ITER" by X. Litaudon et al. to be published in Nuclear Fusion Special issue: overview and summary reports from the 26th Fusion Energy Conference (Kyoto, Japan, 17-22 October 2016) ²See the author list of "Overview of progress in European Medium Sized Tokamaks towards an integrated plasma-edge/wall solution" by H. Meyer et al., to be published in Nuclear Fusion Special issue: overview and summary reports from the 26th Fusion Energy Conference (Kyoto, Japan, 17-22 October 2016) #e-mail: marco.wischmeier@ipp.mpg.de #### **Motivation** - Total power dissipation required sums to > 90% 95% of P_{heat} for DEMO type device and (70-80%) for ITER - Maximize radiation in EDGE and SOL (DEMO requires ~70% radiation inside LCFS) - ➤ Enhance lifetime of divertor by minimizing erosion in an impurity seeded plasma → T_e<2-5eV - ➤ Plasma facing components in divertor limit deposited power to 5MW/m²- 10 MW/m² for DEMO - > Operate with a pronounced or completely/fully detached divertor in a DEMO type device [1,2] ### Maximizing radiative power fraction for minimizing divertor load - JET and AUG: For N₂ stable X-point radiation and complete detachment at highest f_{rad} and modest reduction of confinement (5%-20%) [2,3,4,5]. - JET: Ne and Kr: cyclic X-point radiation related to $L\rightarrow H\rightarrow L$ transitions. Maximum f_{rad} for Ne, Ar, Kr with stable X-point radiation and loss of confinement in L-mode, important contribution to f_{rad} from inside pedestal top, detached divertor regime. - At JET complete detachment for all seeding species but f_{rad} of 60-65% for Ne, Ar ,Kr and 75% for N₂. Discussion on power balance for JET ongoing, see [6,7] - AUG: Ne leads to uncontrolled W core impurity accumulation at reduced ELM frequency, no stable detachment; Kr f_{rad} of 90% with radiative ring at pedestal & not stable detachmen. ## JET: **AUG** [3,4]: Radiative instabilities at JET: Ne seeding Kr seeding H-mode L-mode Core density LID3 Oscillates/ Edge density LID4 bifurcation Radiative fraction #### **Conclusions** - At AUG and JET complete detachment at target correlates with enhanced radiation inside LCFS, most noticeable via X-point radiation. For AUG numerical modeling of N seeded discharges links complete detachment to drop in upstream pressure at separatrix [11] - Transient detachment can occur during transient H-mode phases with enhanced pedestal density at JET (seen for Ne, Kr), cycles due to impurity transport - Interrelation of confinement, radiative stability, degree of detachment needs assessment - Experimentally no "burn through" of lobes is observed in detachment with MP coils on AUG Numerical modelling: Role of drift terms decisive at low density and when approaching - Use of SOLPS5.0 code reproduces HFSHD and resolves issue of modeling divertor asymmetry [11] → pending for JET - Modeling of highly radiating scenarios with sophisticated SOL code for JET pending #### Stable complete detachment at JET (N) N₂ seeding at 75% f_{rad}, mitigated ELMs close to L-H power threshold, stable completely detached divertor #### Cyclic detachment at JET (Kr & Ne) Kr seeding at 60% f_{rad} with H \rightarrow L \rightarrow H mode cycles [4] \rightarrow detachment correlates with increased pedestal density during H-mode phase, triggers enhanced radiation in pedestal region, visibly X-point radiation -> back transition to L-mode and drop in density correlated with re-attachment during L-mode, cycle determined by Kr transport and possibly heating power $n_{sen} = 1.5 \cdot 10^{19} \,\mathrm{m}^{-3}$ Strong Scr. #### Power exhaust with MP coils on AUG [8] Model: High density: lobes wash out → small effect of screening **EMC3-EIRENE** results of outer divertor heat flux and particle for different separatrix densities and screening strengths 4.8 P_{in}=0.2MW $_{3.6}|D_{\perp} \neq 0.1 \text{m}^2\text{s}^{-1}$ Experiment: Under detached conditions lobe structures vanish, no reattachment (no "burn through" of lobes) and with n=2 MP rotating rigidly at 5Hz 1.5 Ip=0.8 MA, Bt=-2.5 T Experiment: Deposited power load_on target in L-mode density ramp without Advancements in modelling power exhaust for AUG and JET by activating drift terms Role of drifts in JET L-mode plasmas [10] The High field side high density (HFSHD) in AUG H-mode [9] References [1] A. Kallenbach et al., FEC 2014, St Petersburg, [2] M. Wischmeier et al. Journ. Nucl. Mat. 2015, [3] M. Bernert et al. PSI 2016, [4] F. Reimold et al. Nucl. Fusion 2015, [5] A. Huber et al. EPS 2014, [6] C. Guillemaut et al., PSI 2016, [7] G. Matthews et al. PSI 2016 [8] D. Brida et al PSI 2016, [9] F. Reimold et al. PSI 2016, [10] L. Aho-Mantila, submitted to Nuclear Fusion and IAEA 2014, [11] F. Reimold et al. Journ. Nucl. Mat. 2015 detachment (AUG and JET) [10,11]